
W7 - - - __  _

/AD~ A QIe2 736 GEORGE WASHINWION UNIV WASHINGTON D C PROGRAM TN LOG——ETC FIG 12/1
ON PLATOON FORMATION ON TWO—LANE ROADS . (U)
MAY 77 Z OARZILY. M RUBINOVITCH N0001U—75—C—O72q

UNCLASSIFIED SERIAL—T— 350 NL

I CF P
004a •

~ 7 ___________________________________________ ______________________—-~~~

H

a I



I -

4~
.

THE

~~
4 GEORGE

WASHIN GTON
UNIVERSITY

‘p

STUDENTS FACULTY STUDY I~-F ESEARCH DEVELOPMENT FU1
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TED-
NOLOGY FRONTI~ SIGN
ENGINEERING APP -

~~~~~~~~~~ 
EN(

GEORGE WASHIN NI~
:

• 
-

/C)
LU

/
~~~~u..

INSTITUT( lOR MANAG(MLNT
SCUINCI AND INGINIFRING
S( H 1 R 1  of I \( I\I RIN( I

-\ \ I )  AI’I’I III) ~‘( IIN(

THIS OOCUMLP4T HAS SEEN APPROVED FOR PUBLIC RELEASE AND SALE, ITS DISTRIBUTION IS UNLIMITED



_____ ~~~~~~~~

H

ON PlATOON FORMATION ON NO- LANE ROADS

by

Zeev Barzily *
Michael Rubfnovi tcht

Serial T—350

The George Washington University
School of Engineering and Applied Science

Institute for Management Science and Engineering

*Research Sponsored by

Program in Logistics
• Contract N00014—75—C—0729

Project NR 347 020
Office of Naval Research

tResearch Sponsored by

Air Forte Office of Scientific Research
• Grant No. 74—2733D

• with Northwestern University

This document has been approved for public
sale and release; Its distribution is unlimited .

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~ — —~~~•—-~~~~—~~~~~~~~~~~~~~~



~~~~~:i~ 
- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

NONE
S ECURITY CLASSIF ICAT ION OF THIS PAGE (Wh en Data Fn1.r.d)

D DflDT nfl#11u r A ~rIf~kI DAr READ INSTRUCTIONS
• / ~~“ ~~~“ ‘~ “ “ I’ ’ 

— 
BEFORE COMPLETING FORM

• 

3 . R EPORT N~~~~~~~~~~~~~~~~~~~.- ~~~~~~~~~~~ 2. GOVT ACCESSIO N NO. 3 RECIPIENT S C A T A L O G  NUMBER

‘—.-- .~~Y / d l  T-350 I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

j: 4. T ITLE (and SubtItle) 5. TYPE OF REPORT 6 PERIOD COVERED

~ (j2 ON PLATOON FORMATION ON TWO-LANE ROADS / - SCIEN’rIFIC

• I —.. . - - 6. PERFORMING ORG. REPORT N UNDER

/ ~~~ CONT RAC T OR GRA NT NUMBER(.)
• /

, ZEEV/BARZILY I I /
• 
~~~~~ MICHAEI/RUBIN0vITCH ( . !~~~ NOOøl4-75-C-~~729 L

1’ .‘ . ;-
• 9. PER FORMING OR G A N I Z A T ION NAM E AND A DDR ESS .- -••- -

THE GEORGE WASHINGTON UNIVERSITY • 
AREA 6 WOR K U N I T  NUM~~~ RS

PROGRA6IM IN LOGISTICS
WASHINGTON, D.C. 20037

II. CONTROLLING OFFICE NAME AND ADDRESS
a OFFICE OF NAVAL RESEARCH ~~~~~~~~~~~~~~ ~~7 7 •  -

~~

CODE 430D
ARLINGTON , VT RC ,TNTA 7721 7 fl

$4. MONITORING AGENCY NA~~~~~~
A ODRE5S(l t  dlff.rwt from Controllj,eá Office) IS. SECURITY CLASS. (of thi. report)

~ 
NONE

f IS~~
,1 ‘ SCHEDULE

IS. DISTRIB UTION STATEMENT (of Ski. Report)

DISTRIBUTION OF THIS REPORT IS UNLIMITED .

$7. DISTRIB UTION STATEMENT (of Sb. abeSr.c t .nS.red In Block 20, II different from Report)

$8. SUPPLEMENTARY NOTES

• $ 9. KEY WORDS (Continu, on reve~~~ .Id. if n.c. ...,v and Identity by block numb.r)

TRAFFIC THEORY
PLATOON FORMATION
STATIONARY PROCESS

20. ABST A T (Continue on r.ver.. .td. ii n.c...ary nd td.nUti. by block numb.,)

An approximate model for the study of platoon formation on two—lane
• highways is discussed in detail. The model assumes that the two—lane

highway is divided in each traffic directioo into alternating road sections
of fixed lengths . The passing in one type of section is unrestricted and
the passing in the other one is prohibited . It is assumed that there are
slow and fast vehicles on the highway and that inputs follow independent —s ~(Continued)

DD ~~~~~~ ~473 EDITION OF I NOV 15 1$ OBSOLETE NONE
S/N 0 * 02 - 0 1 4- 6 6 0 1

• SECURITY CLASSIFICATION OF THIS PAGE (Wfi.fi Data Xnl.r ad)



‘-
~
-
=~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

._ 2~~~~E. — — -
-

NONE 
______

•.LL I i 4 I T ’~ C L A SS IF ICA t I ON  OF THIS P A~~Li Nhon Iteta Entered)

20. Abstract (Cont ’d)
- -

~ 
4
,~Poisson processes. The results include the distribution of the number of
vehicles in a platoon and the average speed of a typical fast vehicle.

I

NONE

• 

SECURITY CL. ASSI~~IC ATION op 
~~~~



• THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Ins t i tu te  for Management Science and Eng ineering

Abst ract
of

Serial T—350
20 May 1977

I

ON PLATOON FORMATION ON TWO-LANE ROADS

by

Zeev Barzi ly
• Michael Rubinovitch

An approximate model for the study of platoon formation on two—
lane highways is discussed in detail. The model assumes that the two—• 

• lane highway is divided in each t r a f f i c  direction into alternating road
sections of fixed lengths. The passing in one type of section is unre—• s tr icted and the passing in the other one is prohibited. It is assumed
that there are slow and fast vehicles on the highway and that inputs fol-
low independent Poisson processes. The results include the distribution

• of the number of vehicles in a platoon and the average speed of a typical
fast vehicle.

— 
_ _ _ _ _ _ _

• /

- -

Research Jointly Sponsored by
Air Force Office of Scientific Research 

• 
• •

and .~~~~- •
Off ice  of Naval Research



~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

THE GEORGE WASHINCTON UNIVERSITY
School of Engineering and Applied Science

institute for Management Science and Engineering

ON PLATOON FORMATION ON TWO—LANE ROADS

by

Zeev Barzily
Michael Rubinovitch

• 1 . Introduction and Summary

This communication studies a simplified model for platoon (bunch)

formation on two—lane two—way highways.

• The behavior of vehicles on two—lane two—way highways is a very coin—

plex process and several models have been proposed by different authors

under various simplified assumptions. Usually the objectives of such

studies are to der [ve the distribution function of the number of vehicles

in a platoon and to find the average speed of a fast test car moving in

a stream of slow vehicles.

The models for traffic flow on roads may be divided , according to

their method of s tudy , into  two groups , microscopic models and macroscopic

models. in the micro approach a detailed description of the behavior of

individua l vehicles is the basis for the construction of the model. The

macro approach , on the other hand , stud ies the behavior of sizable groups
• of vehicles without specifying the behavior of any single vehicle.

Sever al models ha ve been proposed for traffic flow on two—lane

roads. Tanner [9 1 asSume s that t r a f f i c  in one direction is moving at a

cons tan t  speed ‘.‘ while  t r a f f i c  in the opposite direction moves at a
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constant speed V . Spacings between hunches are assumed to be exponen—

tiall.y distributed . The purpose of this study is to determine the average

speed of a single vehicle having a free speed of u (u > v) and travel-

ing in the v stream. Miller [7 ]  discussed a macro model for the deter—

mination of the average passing rate from bunches. He assumed exponential

spacings between platoons and that the platoons are in a state of equilib-

rium in the sense that the average rate at which vehicles join a bunch

equals the rate at which they leave it. Taylor, Miller , and Ogden [10]

compared numerical results of several bunching models using both experimental

and simulated bunch size data. Galin and Epstein [5] studied the steady—

state situation on a road in which passing is possible only in passing

a’ * points located at equal distances along the road. Models for traffic

flow in a no—passing zone are proposed by Cowan [2], Hodgson [6], and

Epstein , Galin , and Shlifer [4].

The present study is an extension of the models proposed by Galin

and Epstein [51, Cowan [2], Hodgson [6], and Epstein, Galin , and Shlifer [41.

We assume that the road consists of alternating free—passing zones and

no—passing zones in each traffic direction . The free—passing zones are

named Type I sections and the no—passing zones are named Type II sections.

it is also assumed that all road sections of the same type have the same

length. What we in fact have is a sequence of no—passing zones of fixed

length separated by a sequence of free—passing zones of fixed length.

1n reality the lengths of the Type I and Type Ii sections are ran—

don variables dependent on traffic in  the opposite direction . However , we

assume that the Type I and Type TI sections have constant lengths because

it enables us to analyze traffic in one direction independently of traffic

in the opposite direction . Even under this simplified assumption , the anal—

• ysis Is quite complex. We believe that the present model may give some

insight into the mechanisn of platoon formation . Moreover, there are

situations in which this model may in  fact provide an approximation to

the behavior of vehicles in a road . l’hls will he the case when traffic

intensity is low and passing is frequently prohibited due to sight and

road conditions.

— 2 —
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A summa ry of the paper now t o l  lows . In St’ t t  ion 2 we give a detai led

description of our model and its underlying assumptions. We also derive

several properties which will provide the basis for the study of platoon

formation in Section 3. Section 4 contains a numerical example and

Section 5 is a discussion of the model.

2. The Model and Some Prel iminary Results

Consider a two—lane two—way highway and assume that vehicles enter

and leave it only at its end points. The highway consists in each traffic

direction of alternating Type I and Type II sections. As traffic in one

direction is (assumed) independent of traffic in the opposite direction, we

will focus our attention on traffic moving in a t r a f f i c  direction that will

be named “our ” direction. Let 
~l 

denote the length of a Type I section in

• our direction, while 
~2 

denotes the length of a Type II section.

Assume that there are two types of zero size vehicles moving in the

highway ; slow vehicles have a free speed v
1 

and fast vehicles have a

f ree speed v2 (v2 > v~ ) . Input processes of slow and fast vehicles are

independent Poisson processes with arrival rate A
1 

for the slow vehicles

and A 2 for the fast vehicles. Regarding the movement of vehicles, we

shall assume the following. A slow vehicle always maintains its free

speed v
1 

. A fast vehicle moves at its free speed v
2 except when it

comes up against a slow vehicle in a Type II section . When this happens

the fas t  vehic le slows down immediately and follows the slow one at a
ze ro distance up to the end of the section . At the end of the Type II

section it immediately passes the slow vehicle and resumes its free

speed v2

We assume that fast vehicles do not disturb one another. He nce ,
the anal ysis o .  the movement of fast  vehicles alon g the highway can be
carried out through analyzing the movement of a typical fast vehicle ——
a “test vehicle . ” Let t 0  denote the time at which the test car arrives
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at the highway, and let I i  : n = l ,2 ,..  .1 he tin’ interarrival times of

the slow vehicles which precede it. Th us, the slow vehicle closest to

the entrance arrives time units prior to t~O , the slow vehicles in

front of it arrives T
i 

+ time units prior to t=O , etc. By assump-

tion and by the well—known properties of Poisson processes, it is clear

that r
1
,12,... are i.i.d. exponential random variables with mean

The fast test vehicle now starts its trip on the highway . The fol-

lowing are some fundamental observations regarding its movement and inter-

actions with other vehicles :

(a) Let 1) (u) , (m=l,2,... ; u < i ) denote the distance
in — 1  

- •
between the test car and the closest slow vehicle ahead
of it when the test car is at a distance u from the

• beginning of the mth Type I road section . Then D (u)

are i.i .d. exponential random variables , all with mean

• (b) Consider two fast veh icles, say No. 1 and No. 2, and sup-
pose No. 1 is the one that arrives first at our highway.
Suppose also that No. 1 is impeded by a slow vehicle
(henceforth Vehicle A) at the ith Type II section . Then
if No. 2 is impeded by A at the (i+j)th Type II section
(j  > 1), then No. I and No. 2 will never be in the same
platoon .

We first establish (a). Let

D T V
1 

, n=l ,2,...

S
n 

= 

i~ l 
D. , n=l ,2,...

• and denote by f ( )  the probabil ity density function of S
n 

By defi-

nition , D
1

(O) = , and since D are independent and exponentially

distributed (parameter A
1 /v 1

) it follows that f (’) is a gamma density

with parameters (n, A
1/v1) . The distance between the test car and the nth

preceding slow vehicle at t=O is S
n and when the test car is at a dis—

tanre u (u < R~ ) from the entrance , this distance reduces to



T—350

= S — u(I — v /v )
n n 1 2

If the test car has already passed the nth stow vehicle , S’ is negative.

Let ~ (~~ 
) d e no t e  the dis irihut ion function (d. f. ) ~f D (u) ; then

F
i,u~~~ ~[o ~ — u (l — v1/v 2 ) ~

+ 
n~ 2 [ 1  — u ( i  — v1/v2) < 0, 0 < S

n — u(l — v1/v2) ~
-(A

1/v1)u(1 - v
1/v2) -(A

1/v1)[u(1 
- v

1
/v
2) + x]= e  — e

u(l — v
1
/v

2
)

+ I f (Y)P[u(i - v1 /v 2) - y < D < u(l - v1/v 2
) — y + x]dy

n l  y 0

-(A
1
/v

1
)y

• = 1 — I ’

Now S E t

• k = min fn S - 
~i
(l_ v

1
/v
2
) > 0}

and obtain

T
k+l

v
l , if D

1
(Q -

1
) ~~ i l  — v

1
/v
2
)

2 D
1
(i

1
) — 

~~~~~ 
— v

1
/v
2
) jf D

1
(9~1) > 

~~~ 
— v

1
/v
2
) .

From this we conclude tha t D
2
(0) is an exponential random variable (r.v.)

due to the exponentiality of Tk+l and D
1
(~1) , 

and the lack of memory

property of this distribution . Thus starting with D
1
(0) as exponential

(with parameter A
1
/v

1
) we find that D

1
(u) has the same distribution for

u < , which in turn leads to D
2
(0) following also the same exponential

distribut ion. By induction , it follows then that D (u) , (0 < u < 
~~~~) is

exponential with parameter A
1
/v
1 

for any m = 1,2,3 



Now we ~ s ta h i  i sh  ( h ) .  l e t  d~ note tht’ L’ngth of t i m e  Vehicle

• No. k , k=I , 2 , ma i n ta i n s  a speed v , n=l ,2 , for  the  mth t ime a f t e r

p a s s i n g  V e h i c l e  A.  T u e  va l ues of xk -ire d et er m i n e d  b y v 1
, v

2
, ~~~

and the d i s t a n ces  b et ween  A and the slow vehicles preceding i t .  Non e of

the  va lues  of these parameters changes , hence ,

L 1 2
X = X , n =l , 2 ; m=l , 2 , 3 ma mn

Now we assume that No. 1 i~~~s~~ A I t  t i m e  t , and therefore it passes

th e 9th impeding vehicle at

9
1 ~ I ~ I

C = t +  / x + / x
- ‘ 

9. • ml m2• m 1  m 1

• No. 2 passes the Qth imped ing  v e h i c l e  at

2 + 9  9. 2 - 2 + 2  9. 2
= ~~~ + 

m 1  
~

2
1 

+ 
m 1  

~
2

2 
= t+j ~~~~~ + 

m 1  
~
1

1 + 
m l  

x’1 >

consequently, No. I and No. 2 w i l l  never  s imul t aneous ly pass any slow vehi-

c l e , which means tha t they will ilever move in the same platoon. This proves

Statement (h).

• From here we can make two further conclusions essential to the ana ly—

S I S  of t he  n e X t  S ec t i On :

(c )  Vehic le  No. 2 w i l l  neve r move in a p l a t o o n  wi th  No. 1 if
i t  passes Vehic le  A l ate r  than the end of the (i+1)st
Type IT section .

• (d) if the distance between No. 1 and No. 2 exceeds (2
l
+9
~

) x

(I/v
1 

— l/V )) , then No. I and No. 2 will never move in

t h e  same p la toon .

To see wh y (c )  is t rue , imag ine t h a t  there is a ( f i c t i t i o u s )  veh ic l e

in a p l a t o o n  w h i c h  is moving a f t e r  A in the ( i +l) s t  Type TI sec t ion .  Then

by (a) the f i c t i t i o u s  v e h i c l e  w i l l  never come up against  No. 1. Hence ,

s ince f a s t  vehic les  neve r pass one another , then f a s t  vehicles moving behind

the  f i c t i t i o u s  one w i l l  never come up aga ins t  No. 1. Assert ion (d) is now

6
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obvious s ince No. ~ w i l l  be t i n a h i e  CO pass a s l o w  v e h i c l e , which  impedes

No. 1 a t  a Type I I  sect ion  be fo re  t l i ~ beg inn ing  o the  nex t  consecutive

Type 11 sec t ion .

3. [he P l a toon  Fo rmat ion

We w i l l  now determine  the d i s t r i b u t ion f u n c t i o n  of the number of

f a s t  v e h ic l e s  i n  p l a t o o n s  w h i c h  a r r i ve  at the ends of Type TI sections .

A plat oon is fo rmed  when severa l  f a s t  veh i c l e s  toge the r  are impeded b y

a slow veh i c l e .  When such a platoon arr ives at the  end of the Type TI

section in w h i c h  i t  is formed,  the f a s t  vehicles  pass the slow leader ,

c o n t i n u e  moving as a fas t platoon , and the zero r e l a t i ve  nistances among

the co n s t i t uen t  f a s t  v e h i cle s  never change . The p latool i  may join (or be

jo ined  b y )  o the r  p l a toons  l a t e r .  In the discussion here  we do not  d i f f e r -

entiate between platoons moving at their free speed (v
2
) and platoons

moving at a speed v
1 

(a l tho ugh this  separation may be added).

We begin with the determination of the distribution of the t ime

spent  in a Type IT sect ion . From (a)  of Section 2 we deduce t ha t  the

• t imes spent  by fast veh ic le s  in Type II sections are i .i . d .  random vari-

ables. Let T denote the length of a time period spent by a f ast vehicle

i n  t h e  mth  Type I I  s e c ti o n , and  l e t  F
T

( )  denote the d . f .  of  I . Clearl y ,

= max {2 .) /v
2 ~ 

~ 
— D

m
( 9 .

2
))/ ~~

h
i I ‘

ii Cli C C’

0 ~ <

—A (2 /v — t)
F
1

(t )  = e 
1 2 1 

, Q
2 /v 2 

< t <

I , Q
2
/v~ < t

and

— ) ~1~
,
2 ( l / v

1 
— I / v ., )

e , t = 2 2 /v 2
FT ( d t )  -A

1
(9.

2 /v 1 - t) 
(3.1)

A 1 e (It 
‘ 

~2”~ ~ <

0 , o t h e r w i s e .

— 7 —
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U s i n g  a d i f f e r e n t  approach , F.~( t )  was c a l c u l a t e d  p r ev i  ously  in  [41.

Now we d e f i ne :

a T~~~~~A i n t e rv a l of order  rn as a t ime  i n te r v a l  ( t , t+x ] satis-

fy i n g  ( I )  a l l  f a s t  veh ic l e s  which  a r r i ve  a t  the  hi ghway in t h i s  i n t e rva l

are  ~.‘iimpeded in the  f i r s t  m Type 11. s e c t i o n s, and ( i i )  the fas t  vehic les

w h i c h  a r r ive  a t  the h i g hway at t— (an i n s t a n t  b e f o r e  t ) or at ( t+x)+

(an i n s t an t  a f t e r  t ) are impeded in at leas t  one of t he  f i r s t  in Type

I I  s ec t ions ;  and

j :L Typ~~~~~~~~~~~v~~~~~~_2r_d~~~~Jn as a t i m e  i n t e r v a l (t , t+x ] sa t is-

• .~ fying (i) the fast vehi cles whi ch arrive at the hi ghway in (t , t+x ] form

a p l a t o o n  w h i l e  a r r i v i n g  at the end of t h e  mth Type Ii section , and ( i i)

v e h i cle s  t h a t  do not  a r r i v e  a t  t h e  h ighway in t h i s  i n t e r v a l  do not move in

t h i s  p la toon at  t ha t  p o i n t .

S ince  the arr i vals of f a s t  v e h ic l e s  at  the h i g hway are assumed independent

and Poisson , one can c a l c u l a t e  the  d i s t r i b u t i o n  ru n c t i o n  of the number of

• f a s t  v e h i c l e s  in  a p la toon  i f  the d i s t r i b u t i o n  f u n c t i o n  of the  Type B in-

t e r v a l s  is known. We t he re fo re  beg in w i t h  the  d e t e r m i n a t i o n  of this  dis—

• t r i h u ti on .

We not  i e  t h . n t  the  ‘type A and type  B i n t e r v a l s  of order  in ( formed )

i n  any  t i m e  i n t e r v a l (t  , t 2 ] co n s t i t u t e  a pa r t  i t  ion of th i s  i n t e r v a l .

h i r t l i er m o r e , t h i s  p a r t i t i o n  is a fixed  f u n c t ion of 2 r ~2 ’ ~~~ V
2 

and of

t i n e  a r r i v a l s  at the  hi ghway of s low veh ic les  in  (t 1 
— m( 2

1+9 2 ) ( 1/ v
1 

— 1/v 2) ,

r t
2 ]  

. (Th e su b t r a c t i o n  of m ( Q
1+9.2

) ( l / v
1 

— l /v 2
) r esu l t s  from the f ac t  tha t

w h i l e  mov ing  in a s t re t ch  of road of l e n g t h  m ( 2
1+2 2

) , a fas t  vehic le  may

pass ~ ]ow v e h i c le s  w h i c h  a r r i v e d  at  t In e  beg i n n i n g  of t h i s  section no ear l ie r

t h a n  m ( Q
1+Y.2

) ( l/ v 1 
— l / v 2

) ahead of I t . )  Since the slow vehic les  arrive

n c c o ri in g  to  a Poisson process and s i n c e  
~~~ ~~~ 

v
1
, and v

2 
are con stants ,

t h e n  the p a r t i t i o n  i s  a s t a t i o n a r y  process.  Moreover ,  the  Type A and Type B

i nt e r va l ’~ in  (t
1
. t~~ are  not  i n d e p en d e n t  due to  the  cyc l ica l  e f f e c t  caused

— 8 —
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by the ent rance of any g iven s]ow vehicle to consecut ive  Type II sections

every f i x e d  time period —— (9.
1
+Q 9) / v

1 
. We will determine therefore the

marj~~na1 density of  the ‘t ype B intervals ot  order m

To de termine the marg inal dens ity of a Type B in terva l , we c a l c u l a t e

S(u,m) , the probability that two fast vehicles , arriving at the highway u

• unit of time apart , move in one platoon at the end of the nnth Type II section.

Let I. denote the time spent by the leading fast vehicle In the jth Type II

section. Denote by U . the interarrival time of these fas t vehicles at the

end of the jth Type i i sec tion , and def ine  U
0 

u . Let F
~ T1~~~

’
~~ 

and

G
u i

(.,.) be the joint distribut ion functions of (U
1
,T
1

) and (U .,T.)

V 3
I
~. j > I , respec t ively. While calculating S(u,m) the  following [(3.2) —

(3.5)j must be taken into account:

S(u ,m) = P [U 0 I U
0
u] (3.2)

Uk 
= 0 implies that U. = 0 for all I > k . (3.3)

• Let DS. denote the distance between the second fast vehicle and the first
3

slow vehi c le pr eceding it when the fas t vehicle is at the entrance of the
• jth Type IT section , and let

H =  1/v
1 

— I / v 2 .

Then

(U
m=O and T , = Z

2 1v 2 
for j  < m) implies that

+ 
(3.4)

(u . < (2
1+9,

2 )H and DS.~ 1 
> V

1[U ~ — 9.
1

H] )

+where [a] is the positive part  of a . The cond i t i on  on U . resul ts

from (d) of Section 2 and the information on DS
~÷1 

is due to the leading

fast vehicle having been unimpeded in the jth Type II section. Finally,

(u =0 and T~ > Q.
2

/v
2 

for j < m) implies that U . < Z
1
H . (3.5)

— 9 —
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Unless (3 .5)  ho l ds , No. 2 is not able to pass the slow vehicle that impeded
No. 1 at the jth Type II section before the beginning of the (j+l)st Type

II section. From (a) of Section 2 and Equations (3.4) and (3.5), we

deduce that  G
~ ,

~~ 

( , )  , j=2,3 ‘ire identical. Furthermore, we
.1 i

• 
~ realize that  the reason for the difference between F

~ T ~~~~~ and
1 1

• 

‘ 

I ~~~~~~~~~ is that when T. = 9.
2/v2 , j > 1 , we have prior information

• •jj 3

on DS.+l .

I
The probability S(u ,l) has a simple expression (see Equation (A.t)

in the appendix). The determination of S(u,m) , m >  2 , is carried out as
follows. Define

t
2 

to
Q (u ,t ) = I I dG (u,t U = u , T = t )
in- 1 m- 2 m- 2 U , T in- 2 rn-2 m— 2 in- 2t ’t  u 0  m— l rn —i

P [U 0 j U u, T t] , ~~~~~~~~ (3.6)
in rn-i m-l

and

t
2 

to
Q .(u .1, t .1 ) 

t~ t
1 

u . O 
dC U T (u .

~~
t I U .~~~~u .1 ,  T . 1 =t

1 1
)Q
~+1(u .

~~
t)

j=2,3,...,m—2 . (3.7)
Hence

t
2 to

Q1
(u,m) = S(u ,m) = I I dF~ T 

(u
1
,t I U0 u)Q

2
(u
1
,t )  , (3.8)

t=t 1 u 1 0 1 1

where

= (R.
1
+l.2 ) ( I / v

1 
— l/v

2
) , t

1 
= Q.2 /v 2 , and t

2 
= Q.

2 /v 1 . (3.9)

Tin’ conditiona l distributions of C’. and F and the probability

p [u  U = u , I = t ]  are derived In the appendix.m 0  rn—I rn-i
I
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Now we determine the distribution function of a Type B interval.

Let A(m) denote the event that the first of the two fast vehicles is

impeded in at least one of the first an Type II sections , and let

B(u ,m) denote the event that  the time from a random arrival to the end

of the first Type B interval of order m is longer than u . Clearly ,

S(u,m) P[A(m) (~ B(u,m)] = P [ A ( m ) J P [B ( u ,m) I A(in) ] , (3.10)

1 - P[A(m)] = P E T = 2~ /v , T 2. /v , ..., T = 9. /v ]
1 2 2  2 1 2  m 2 2

and due to the independence of T
1 , 

i 1 ,.. .  ,m , one obtains

—mA 2. H
— P [A(m) ] = (PET = 2.

2 /v 2
j )m = e 

1 2 
(3.11)

Now let X(m) denote a Type B interval of order in , let X ’( m)
denote a Type B interval of order m containing a random arrival, and let

Fx~~~
(.) and F

x I ( ) ( .)  denote the respective distr ibutions. It is known

tha t

xdF (x)

dF
X~ ( ) (X) = 

I~ )~ rn)} — 
(3.12)

0 , otherwise ;
• hence, because the al location of a random point is uniformly distributed in

X ’ (m) , we obtain

xdF (x)
P[B(u,rn) I A(m)] 

~~~ 
E[X(m)] (3.13)

• We Insert (3.13) and (3.11) into (3.10) and get

—mA Q
2H t

S(u ,m) = 
E[X(m)] xdFX~~~

(X) - u (1_FX(m) (u))] 
. (3.14)

Different iat ing (3.14) with respect to u and denoting

S’(u,rn) = S(u,m)

yields

~~~~~~~~~~~~~~~rn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :i•,~ ~~~~~~
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— mA 
1

9
211

S ’ ( u ,m) = E [X (m) ] [1_F
X(m ) (U)] . (3.15)

Using the fact that FX ( m ) (O) 0 , we get from (3.15) that

E[X(m)I = 
S’( O ,m) (3.16)

and

Fx~~~~
(u) = 

~~~~~~~ 
. (3.17)

The expression S’(u,m) is simple for m 1  and becomes more messy as

m increases.

We a re now able to calculate the probability function of the number

of fas t  vehicles in a platoon . Let N(m) denote the number of fast ye—

hid es in a p latoon arriving at the end of the mth Type II section , let

• ~N(m)~~~ 
denote its probability function, and let C(m) denote the event

that the p latoon has been impeded in at least one of the f i rs t  m Type II

sections. Clearly,

• 
~ N(m) ~~~ 

= P[C(m)]PIN(m) n I C(m ) ] + P[C(m)]P [N(m) n I C(m)]

where C(m) is the comp Lement of ~ C(m)  . The arrival of fast vehicles at

the highway is Poisson , hence

1 , n 1
• P [ N ( m ) n I ~~(m) ] = (3.18)

0 , otherwise.

Deno te by 
~~~~( )  

the p robabi l i ty  tha t  n fast vehicl es arrive at a Type

B interval.

2. n
0 (A

2x) —A
2
x

n!  e dFx~~~
(X) , (3.19)

and therefore

q (n)
P[N(m) n I C(m)J = 

1 
N(m) 

~~ 
, n=1 ,2 , 3 (3.20)

~~~(~f l)

• — 1 2 —
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The platoons that are Impeded in at least one of the in f i rs t  Type 11

sections arrive at the end of the mth Type II section at a rate of

• —m A 2 . H \
— e 1 2 

/ / E [ N ( m )  C(m) I ; the platoons that are not impeded arrive

—mA
1
2.
2Hat the same point with rate A

2
e ; hence

t . (
~~ 

- e
_inX

1
t
211)

• P[C(m)J = — iIN (m ) C(mfl (3.21)

(~~~ 
— e

_m 
1 2 

) + 
—mA

12.2H f -‘1
E [N(m) 1 C(m) ~ 

e

We calculate the conditional expectation of N(m) using (3.19) and (3.16),

and the result we insert into (3.21) to obtain

— 
~~~ ) (O))S (O ,m)

P [ C (m ) ]  = 
(in 

—mA 9. H • (3.22)
_ (i. — q~(~)(0))S’(0,m) + A2e 

1 2

Combining (3.22), (3.20), (3 . 1 9) ,  (3.18), (3.17), (3.6), (3.7), and
(3.8) yields the desired probability function, from which we obtain

A
2 

[X(m) I
• E [N(m) j = _____________________________________________

( —mA
1
2.2H\f 0 .

~~~2
,C \

\i — e /(1 — I e dFxt~~~
(x))  + A 2 E[X( m )]e

\ 0 ‘ / (3.23)

The expectation of N(m) can be bounded without calculating dF
x~~~

(.)

For this we use Jensen ’s Inequality to get

~0 — A 2x — A 2E [X(m) ]
I e dF

x~~~
(x) > e , (3.24)

• and a s

—A x2 l — ee < 1 — - —  x , for any O < x < t
0• 0

we obtain

~~~~~~• 0 
~~~~

_ 2 0
I e dF / ~(x) — 

e E [X( nn ) ) . (3.25)X~m, t 0

- 1 3 -
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Using ( 3 . 2 4 )  and (3.25) we get

A
2

E I X ( m ) ]  
______E 1

[N (m) 1 = 
mA -mA

1
2.
2
H 1 

E F N ( m ) ]
• \i — e A’ — e / + A 2

E [X ( m ) ] e

A
__________ ________—- 

= E~~[N(m) ]
I —mA 9. H\  A

2
t
0 —mA 2. H 

L

1 2  j l — e  1 2
~l — e  / to 2

Tt Is obvious that E[N(m)J is nondecreasing, hence Its upper and lover

hounds, EU[N(m)] and EL[N(m)] , respectively , can be established from
E
1
[N(m)1 and E

2
[N(m)] as follows :

0 E U [N ( m ) ] = max (E
2

[N ( m) ] ,  EU[N(m—l)J}
and

EL [N (nn ) J = max{E
1

[N( m ) ] , F.L[N(m—l )J }

The expected number of fast vehicles in a platoon behind a slow

vehicle can he calculated without apply ing the procedure outlined above.

Let J(i) denote the number of fast vehicles In a platoon moving behind

• a slow vehicle at a distance 2. from the entrance, and let r1(9.) be the

probabi l i ty  tha t  a fast  v e h i cle  Is traveling at a speed v
1 

at that point.

We now show that

A 2E(J(2. ) j = -
~~

— r~~ (9.) . (3.26)
1

Ta prove (3.26), suppose we observe the arrival process of vehicles at the

point located at a distance 2. from the entrance. Let t denote the

length of the observation period and let J1(t ,2.) and J 2 (t , 2.) denote

the number of slow and fas t  vehic les , respectively , which arrive at that
point in the time interval considered. Denote by Y 1 , t 1,2 ,.. . ,J1(t ,2.)

the number of fast vehicles in the p latoon behind the Ith  slow vehicle .
Using the strong law of large numbers , one may obtain

— 1 4 —
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J
1
(t ,9.)

;,• Y .

Ii~ 
~~~~~~~~~ 

= E [J ( 2 . ) J . (3.27)

The left—hand side of (3.27) can be rewritten as

• J
1
(t ,9.) J

1
(t,9.)

.
~~~ Yl .~~ ~i j  (t,9.)

• u r n  J ( t 9.) = Urn _______  2 
fj (t , z)

J
1

(t ,2.)

V y
—l ~ J

2
(t,Z) 

________= 

~~~ J~ (t ,~Y ~ 
-- lilU J ( t 2.) (3.28)

Using the s trong law of large numbers for the three series in (3.28) yields

the desired result. The probability r
1
(9.) is obtained from (3.1) and is

given by

0 
‘ 

i f  ~ — 

[9.l~~
9.
2}~~

l
~~~~

2 ~~

1 —A x(1/v — l/v2
) 

9.1 - e . i f  0 < x = 2. - 
[2.l

+2.2]2.l
+t

2 
- ~~~

. 
<

(3.29)
whe re [a] is the bi ggest integer whi ch is equal to or smaller than a

4. Numerical Examples

• We ca lcula te  here E [X ( l ) ]  , E [ X ( 2 ) ]  , E [N ( l ) ]  , and the upper and

l ower bounds of E [ N ( I ) J  and E [N ( 2 ) ]  . Using the procedure outlined in
the previous section , we obtain

—A 12.2H
E [ X ( I ) ]  = 

~~~ 

‘

— 2 A
1

2.
2

H

r ‘ l — e
- 

A -A ~ H -2A 2. H ‘1 1 2  1 1 2

• 

. 
~~

— + 2A
1
e 

— 15 —
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and

E [N (. l ) 1 = 
A~~~
( 

~~~~~~~~~~~~~~~~~~~~~~

(no te, E[X(l fl < E~ X (2)~ ) .  The following are the numerical values
assumed: = 60K , ~ 

v
2 

80
Km/h , 

A 2 
= 225 vehIcles per hour, and

9 ., = 1.0 Km (sCt• g raphs) .

0 250

0 225

E (x(2~

7

0-Iso

~~O• I2S E(X(I)] ___/

0 100 
. uA ( V EHICLES/uNIu1E)I. 2. 1. ~~• 5. 6 1 5.

FIG. I: EXPECTED LENGTH OF TYPE 5 SECTION AS A FUNCTION
OF ARRIVAL RAT E OF SLOW VEHICLES.

2.25

I•0o 
• 4 5 7• 

A(YEHICL(S/VUIUTEI
FIG. 2: EXPECTED LENGTH OF A PLATOON AS A FUNCTION OF

THE ARRIVAL RATE OF THE SLOW VEHI CLES.

?3 
~ ~~VENICLE3/M~~~~E)

FIG . 3 - TH E AVER AG E SPEED OF A FAST VEHICLE AS A FUNCTION
OF THE ARRIVA L RATE OF THE SLOW VEHICLE.

— 1 6 — 
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5. Discussion

• This study discusses the platoon formation in a two—lane two—way

highway under low to moderate t r a f f i c  Intensi ty , i. e ..  up to 4000 vehIcles

per day in each t r a f f i c  direction . Under this traffic load , it is reason—
• able to assume Poisson arrivals of vehicles at the highway (see Taylor et

at .  [10] and Breiman [1]). As for the assumptions on the sizes of the

vehicles, distances between vehicles in platoons, and the passing mechanism,

none of them seems to be too restrictive under this t r a f f i c  intensity. We

believe that the most restrictive assumption here is that the highway is

divided into Type I and Type II sections having constant lengths. Actually,

it would have been more realistic to assume that the lengths of these sec—

tions are random variables , since they depend on sight and road conditions

and on t r a f f i c  in the oppos ing direction. Nevertheless , we preferred this
• assumption beca use it enabled us to analyze the movements of vehicles in one

lane Independently of the traffic in the other lane, and consequently to study

the process of platoon formation, a difficult and complex process under any

set of reasonable assumptions.

We note that the lengths of Type I and Type It road sections may be

determined as functions of the traffic in the opposite lane according to

the following procedure . Let Y denote the interarrival t imes of consecu—
• tive vehicles at the entrance of the opposite lane, let F~(.) be the dis—

• tribution of Y , and let d denote the minimal interarrival time which

enables safe passing. Hence,

= (E[Y>d ] — d)v
2

and 
~2 

satisfies

L2,v2 = ~ (~ + 2.
2
/v2)dF~ (y)

x 0
which yi elds

d
I ydF~ (y)

~2 ? ri~r V 2

— 1 7 —
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Since platoon forma t ion inc reases the gaps between consecutive platoons , we

may act ua l l y ass ign to 2~ a larger val ue and to 
~2 a smaller  value than

the ones calculated from the expression above.

We would also like to point out that even though the result that the

length o f a Type B section Is hounded from above by (2.
1

+2,
2 )H , and conse—

quent ly  the expected length of the platoon is bounded by A
2
(2.
1
+2.

2
)H is

derived under the assumption that and are constants, we expect

tha t  under more genera•l assumptions it can be shown that  the expected length

of a platoon is bounded by an equivalent expression.

Our f inal  remark is in regard to three—lane highways, which are not
I-

1., too common. For such highways the present model may provide a very good
• f i t  if the center lane is assigned alternately to one of the traffic

direct ions as a passing l ane.

:~ 

~
p1J — 18 —



T~~~~~~~

- r—ls o

REFERENCES

[1 1  BRE IMAN , 1.. (1963). The Poisson tendency in t r a f f i c  distribution.

Ann . Math.  Stat. 34 108—311.

(2] COWAN , J. R. (1971). A road with no overtaking. Australian 3. Stat.

13 (2)  94—115.

13 ] COX , D. R. and P. A. W. LEWIS (1966). The S ta t i s t ica l  Analysis of

Series of Events. Methuen and Co., Ltd., London; John Wiley

and Sons , Inc. ,  New York.

[4] EPSTEIN , B. ,  D. GALIN and E. SHLIFER (1974). Behavior of vehicles along

roads for which passing is not permitted. Transportation Res. 8

517—522.

15] CALIN, D. and B. EPSTEIN (1974). Speeds and delays on two—lane roads,

where passing is possible at given points of the road. Transpor—

tation Res. 8 29—37 .

[6] HODCSON, V. (1968). The time to drive through a no—passing zone.

Transportation Sci. 2 252—264.

[7] MILLER, A. J. (1963). An analysis of bunching in rural two—lane

traffic. ~~~rations Res. 1] 236—247.

[8] RUBIN OVITCH, M. (1970). A survey of some recent models for t r a f f i c

on two—lane roads. Technical Report No. 87, Department of

Operations Research, Cornell University , Ithaca, New York.

19 1 TANNER , J. C. (1961). Delays on a two—lane road . J. Roy. Statist.

Soc. Ser. B 23 38—63.

[101 TAYLOR , M. A. P., A. J. MILLER and K. W. OGDEN (1974). A comparison

of some bunching models for rural t r a f f i c  flow. Transportation

Res. 8 1— 9.

— 19 —

I
ha • • —— ~ •- —~~~~~~~~~~~~~~~~ •~~~~~~~• -- ---- • •~ -•~~~~~~~~ - -  - _ _ _



- •  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • ..—
~ •

T—350

APPENDIX

We calculate here some dla tribu tiouis needed f or the evalua t ion of S(u ,a) . Let deaot~

the U.. spent by No. 2 at the jth Type Zr s.•t-tlon , m d  let M
1

(t)  be the number of claw vehicle s which

arrive at the j th  Type It section in the time interval which begine wh.n No. I enters the Type II section

and ends t— un ite of t ime later. To et.p l if y the notation. define T
0 — 0 . Clearly.

Plu_ 0 U
1•u. T 1

.t) — PIH (u) 0. T > t
2/v2 

+ UI

— PIN (u) Oj P(T _ > 1
2/v2 

+ u)

1 • lf u O

— A
1uf -4

1
(i.,H— u)\

s ~l — e / • if .—i and u < t
2H

or u < £
~

N and t — t
2

/v
2 F

or u ( H •in (11.L
2

} and t >

—1 £ H /  —A (t H—u) \1 1 
~l 

1 2 / • if till C u C t2H and t — t21v2

0 , otherwise. (A.i)

For the evaluation of F we use the relation

— U1_1 + (R~—T~ )

Hence .

Fu .t (ut .t I U~~0) — Flu 1 
< u1. T

1 
< t j U0 uJ — PIR

~ 
u1 

— u + T1. T
1 

< t I U~~u1

u
1—u+t

— I I dP (R
1 

C r . T < x U0
u1 (A.2)

x.t21v2 
r.aas(t

2 /v2. t—u} r .x — 1

When u ~ £ 211 . then T
1 

and 
~1 are i.i .d. distributed accord i ng to (3.1). If u C t

2H . 
then the

distribution of T1 is as before , but her.. T1 
and are not independent and the calculation of

F is based on the fact th at N
1

(u) L, a PoLs ~ on rando m variable w ith parameter 11
u . After evalua-

tion of F one can derive dF • which yisld~ , in the case u < 1
2

H

U0 u)

1 u  — l E N
a ~ 1 2 

• u
1
u, t

—2 1 1211 1 (u
1

—u)
~ A~ e du 1 • 1211 u1 

C u + £
2

11. —

2 —21 (1 /v ) A (2t +u — u)
A
l • 

1 2 1 1 1 1 du1dt • t
2
/v

1 
— t < U

1 
< minlu + L2/v1 — t . £

1
H}

— u1 ~ u + t
2
/v

2 
— t , t

2
/v

2 
C t C 1

2
1v
1

2 —2 1 (E ly ) 11(2t+u —u) — A (1 /v -+ u — u)1 2 I~~ I du1
dt + 1 2 1 1 de . 1

2
/v

2 
‘ t < t2/V 2 + U,

• u1 u + 1 2 /v 2 t < 1 1H

—A u —A (t /v — t )
1
~~~ 

1 1 2 1 dt • u1 0. £
2

/v
2 
+ U < I

• 0 • otherwise. (A.3)

• - 2 0 -
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In t he case u ) 1
2
11 . t hen

dFU T (u
l .t I U0

u) -

— 2 1 ! H
e 1 2 

• u1 u. t .-

~-2 A 1
2 H A (u

1— u)
1
1 du~ . u C u1 

< U  + t —

L
2/v 2 ‘ t C

1 2 —21 (E
2
/y  )

— e 
1 1 

e du 1dt • u — £ 211 C u
1 

< min(u+L 2H , t
IN).

u # * 4 t I v  — t1 2 2

I.. 2 —21
1

(&
21v1

) 1
1(2t-4u

1—u) _21
1

1
211 11 (u—u 1

)
A t e e du 1dt + C e dt • E2 /v 2 

C t C £
2

/v 1.

u1 u + L 2/v2 — t

-
• 

0 
• othe rv ice. (A.4 )

As for the evaluat Ion of C , from (3. 5) and (3 .6)  we deduce t hat for any J ‘ 2

Ci) When T~_ 1 > £
2
/v

2 and C £~ N , or ‘-hen — £2 /v 2 an d U~~ 1 
C !

1H , then G’F

(ii) When T3_ 1 > £
21v2 and > £

1
H . thcn No. 2 wil l neve r move wi th No. 1 in the same

platoon. Here we define dC—O

(lii) When — 1
21v2 and U~~1 t

1
H • then )f

j
(L

i
H) is a Poijion random variable with

parameter A~t~H and

— M
,
(1~li) — 0) — I

Here we have

Gu r (Uj.ti I U~~ 1 u~_~~, T~_1 t 2 /v 2
)

~ 
£
2
/v
1 

— (u~_ 1_t
1

H)

— I I dP (R C r , T < x l  U 1 u 
~
. T L

2
/v ) . (A.~~x 1

2
/v

2 
r — mmx(t

2
/y

2~ t—u 1_1
) ~~~ j  j  j  3 1  2

if t~H C U~_1 C 1211 • then It~ and are not independent and (A.5 ) yield .

— 2 1 —
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dCu T
(u

i . t
J I U~~1

U~_~~. T1_ 1 t 2 /v 2
)

• —A (t -.-f )H
e ~ 1. 2 

• u
3
_u

~j _ j . t~ —

— A  I. H —1 [(1 +c ,)Il — u I
e 1 2 1

1 
e ~ • , 12H C U

1 
C (1

1
+i

2
)N , t~ —

-~~ ( Z  /~, — t ) —~ . (t /v — u — t + L H) -•

A~ e 1 2 1 3 e ~ 2 1 ~ ~ ~ du~dt~ , t 21v 2 
C t

1 
C 1

2
/v

1 . 
4 - -  m-

— t~~ < U ~ C !
1
H + 1 2/v 1 

t
j.

I U~~1 
+ t2/v 2 

— t

— 
— A ~~~~~ —1

1
(12 /v 3 

—

4 A  0
_ A

1 I;,v 1 
- t~ ) 

e l 2
~~

1 - U
j  

- t
j 
+ u

lH)
du dt , 12/v 2 

C C 1
2
/v

2 
+ u~~ 1. 

-

•

U
3 

— U
3_ ~ + 12 /v 2 

— t

— 1 1 1 1  —A (i /v — t )
A 1 r~~~~

1 p 1 2 1  1 dt
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